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I. INTRODUCTION TO THE CLOCK NOISE MODELING 

A. Introduction 

Precision time keeping is important for daily life and most 

branches of science. In order to keep the time accurate, a stable 

oscillator is necessary. An atomic or a quartz crystal clock is used to 

generate highly stable clock pulses. Particularly, the atomic clock is 

used as a primary source for the time standard. 

Since the time is derived from counting clock pulses or measuring 

frequencies, timing accuracy is directly related to the fluctuations in 

oscillator frequency. Frequency fluctuation has many causes. Among 

them, some are known and some unknown. Largely, these causes can be 

divided into two categories. First, it is influenced to some extent by 

its environment, i.e., changes in ambient temperature, humidity, 

vibration, acceleration, radiation, pressure, magnetic field, supply 

voltage, and so on. Secondly, it is due to inherent noises which are 

always present in nature, i.e., white noise, flicker noise, random-walk 

noise, and various other noise processes. The former can be greatly 

reduced by controlling the environment. But the latter is inevitable 

and uncontrollable in most situations. Since we are interested in 

setting up a clock noise model and studying clock stability, we consider 

only the second one. This is a reasonable assumption if the 

environmental effect is minimized. 
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B. Background of the Clock Noise Modeling 

TO describe the background of the clock noise modeling, we closely 

follow the work of Barnes et al. [1]. Consider a timing device which 

generates stable clock pulses. Assume that an instantaneous output 

voltage V(t) of the device is given by 

V(t) = (VQ + E(t)) sin (2TrfQt + *(t)) (1.1) 

where and f^ are the nominal amplitude and frequency, respectively. 

If there is no nonlinear modulation effect of converting amplitude 

changes to phase changes and the following conditions are satisfied 

I ^ 1 < 1 (1.2) 

and 

I I < 1 a.3) 

then the instantaneous phase $(t) is 

$(t) = Zirfpt + *(t) (1.4) 

Instantaneous frequency §'(t) is obtained from a derivative of the 

instantaneous phase. Thus, 

*'(t) = Znfq + *'(t) (1.5) 

= 2itfQ ( 1 + n(t) ) 
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where the instantaneous fractional frequency deviation n(t) from the 

nominal frequency f^ is defined by 

( 1 - 6 )  
zirrQ 

Since we deal with the clock noise processes, single-sided power 

spectral density S^Cf) of Î2(t) is considered. It is known that Sj,(f) is 

expressed in the form of Laurent series expansion in the annular region 

of the frequency plane excluding the singularity at f=0 [1]. That is 

Sjj(f) = Z h^fi , for 0 < f < f^ (1.7) 

where h^ is a constant dependent upon each clock device and f^ is a high 

frequency bandlimit. It was proposed that the power spectral density 

Sjj(f) of J2(t) can be used to define the frequency stability [1]. But in 

practice, it is sufficient to use only few terms for S^Cf) such that 

Sjj(f) = h-2f"̂  + h.if"̂  + ho + hif + hgfZ (1.8) 

In the above equation, the first term is called a random-walk 

frequency noise, the second is a flicker frequency noise, and the third 

is a white frequency noise. The fourth is a kind of flicker noise. And 

the last is of the random-walk noise type. In other words, if the 

flicker noise is generated by some method, then other power spectral 

densities with higher odd powers in f can be obtained by post-cascading 

integrators with their inputs being flicker noise which is generated by 

the same method, but with different input noise power. And the power 

spectral densities with higher even power in f may be treated in a 
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similar way by feeding a white noise or a random-walk noise. For this 

reason, we are interested in realizing only the first three components 

as the major clock noise processes. Thus, rewrite Sj^Cf) as follows: 

Sjj(f) = h_2f"2 + h_if"l + hq (1.9) 

The block diagram for the clock noise model is shown in Figure 1. 

In the figure, WG(t), w ^(t), and WGCT) are assumed to be mutually 

independent white noise with zero means and spectral amplitudes S^, S^, 

and S^, respectively. The relation between these spectral amplitudes 

and h^'s can be determined as follows. 

From Figure 1, Sj^(f) is given by 

Here, multiplication factor 2 is included to match the single-sided 

power spectral density in equation (1.9). Comparing equation (1.10) to 

equation (1.9), we have 

S„ = |ho (l.ll.) 

= wh_^ (1.11b) 

= 2Tr'h_2 (1.11c) 

As shown in Figure 1, the problem is how to realize an irrational 

transfer function The other two are trivial to realize. In 

Chapter II, we will examine properties of these three noise processes. 

And we will show, in Chapter III, that this kind of irrational transfer 

function can bs approximated by a rational function in s with a desired 
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Ideal clock 

clock pulses 
with nominal frequency f. 

Wo(t) 

w.2(t) 

1 Integrator -
> or 

counter 

instantaneous 

frequency deviation 

with PSD Sjj(f) 

plus noises with 
PSD S^(f) 

white 
noises 

FIGURE 1. A clock noise model 

degree of accuracy in a fixed frequency range. In Chapter IV, 

realization of state model of clock noises to the estimation and 

prediction of timing error will be discussed using Kalman filtering. 

Its application will be described in Chapter V. Chapter VI will be 

devoted for summary and conclusion of the work. 
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II. CHARACTERISTICS OF THE CLOCK NOISE PROCESSES 

In this chapter, we consider the characteristics of white and 

random-walk noise processes briefly and study the flicker noise 

characteristics in detail. 

A. White Noise 

It is defined to have a constant spectral density function in the 

entire frequency range. With the spectral amplitude A, the power 

spectral density S^(j«) is given by 

S^(jw) = A (2.1) 

The corresponding autocorrelation function is then 

R^(t) = AÔ(T) (2.2) 

A constant spectral density function is non-integrable and so is a 

physical fiction [2]. All physical systems are bandlimited to some 

extent and thus no such an ideal spectral density function exists. To 

avoid a notion of infinite variance of the white noise, we assume that 

the system is bandlimited and so is the white noise. For more 

information, see Brown [3]. 

B. Random-walk Noise 

As shown in Figure 1, the continuous version of a random-walk 

process can be generated as the output of an integrator driven by a 

white noise with unity spectral amplitude. In Figure 2, the random-walk 



www.manaraa.com

7 

noise r(t) is given by 

r(t) = /Q W(U) du (2.3) 

Then, 

E(r(t)] = 0 

E[r^(t)] = t 

(2.4) 

(2.5) 

Note that the variance increases linearly with time t and the root mean 

square value increases in proportion to /t. It is an evolutionary 

process. See reference [3] for detail. 

unity 

white noise 

input w(t) 
t = 0 

random-walk noise 

> output r(t) 

FIGURE 2. Random-walk noise generator 



www.manaraa.com

8 

C. Flicker Noise 

Flicker noise has been known in many scientific experiments for 

many decades. But its physical origin has not been fully understood 

yet. It is found in various areas such as in the study of semiconductor 

devices, in music, in the fluctuation of an atomic frequency standard, 

in the rotational change of the earth, and so on [4-7]. Since its 

spectral density function varies in accordance with |f| " for a = 1 over 

a significant range of the frequency, it is also called ^ noise. We 

will mainly consider the case with a fixed a = 1. 

Properties of flicker noise 

The power spectral density of flicker noise is given by 

infinite frequency. This implies that the total power is not defined 

over the entire frequency range (0, «J. Let's consider the power P in 

the frequency range , Wg]. 

( 2 . 6 )  

S^(jw) is unbounded at zero frequency and is not integrable up to 

(2.7) 
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From equation (2.7), we can draw some inherent characteristics of 

«2 
the flicker noise. If the frequency ratio -jjj— is fixed, then the 

power is same in the lower or higher frequency range with same ratios. 

This is called the 'scale invariance principle'. Since we have an 

unboundedness condition in both frequency extremes, P in either of the 

following two cases has a special name. 

If = fixed and *, then P » (ultraviolet catastrophe) 

If ^ 0 and = fixed, then P -^ «> (infrared catastrophe) 

It was pointed out that these mentally annoying problems arise from 

a simple error of trying to extrapolate experimental results beyond 

their range of applicability and direct observation [8,9]. If we 

consider that every measuring device has a high frequency bandwidth 

limit and even a physical system itself has such a limit, the concept of 

the ultraviolet catastrophe never causes any trouble. 

Concerning the lower frequency limit, its existence was postulated 

for a long time. Since in the absence of that limit the difficulty of 

dealing with the infrared catastrophe arises. But experimental results 

have not confirmed the existence of the lower limit. On the contrary, 

many experiments showed that it can be as close to zero as the 

observation permits. In one paper [10], it is reported that they 

-7 6 
observed it down to 5 x 10 Hz which corresponds to 2 x 10 seconds 

(= 23.2 days). Since it is almost impossible to cary out an experiment 

with a very long observation time interval, the determination of the 

lower frequency limit in the experiment must be traded for the length of 
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observation. Therefore, we never get into trouble with the infrared 

catastrophe in an experiment which takes finite time to be finished. 

Flinn gives an interesting argument to determine the extent of the 

flicker noise spectrum [11]. In his short paper, he assumed the lower 

-17 limit of 10 Hz (= 3.2 billion years) corresponding to a current 

estimate of the age of the universe. And the upper limit may be fixed 

by considering the time taken for light to traverse the classical radius 

23 
of the electron. It is about 10 Hz. Then, the total spectrum range 

becomes 40 decades. Root mean square (RMS) value of this 40 decades 

power spectrum would be about only six times as great as the power in 

the range between 1 and 10 Hz. This tells us that flicker noise is a 

divergent process, but its divergent characteristic is weak compared to 

random-walk noise. In fact, flicker noise has a logarithmic divergence 

property, whereas random-walk noise diverges in proportion to time t as 

shown in equation (2.5). 

2. Nonstationarity of flicker noise 

In order to see that the process is nonstationary, consider the 

flicker noise output f(t) shown in Figure 3. The impulse response of 

the system, h(t), is given by 

h(t) = L'\^) (2.8) 

_ _1_ 
" •irt 
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Thus, f(t) is written in the convolution form of h(t) and input w(t) as 

follows: 

f(t) = w(t) * h(t) (2.9) 

where * denotes a convolution. 

white noise 

w(t) 

with S^(ju)=l 

flicker noise 

-> f(t) 

with S^(ju))=|^ 

FIGURE 3. Flicker noise generated from a white noise source 

Then, the autocorrelation function R^(t,t+T) of the flicker noise 

f(t) becomes 

R^(t,t+T) = E[f(t)f(t+T)] (2.10) 

_ 1 ft 1 , 
~ IT Q •(t-u) (t+T-U) 

= I ln[ 2 {/t®+Tt+t+|}/T ] 

Here, we used the property E[w(u)w(v)] = 6(u-v) for the white noise. 
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From equation (2.10), we find out that the variance (mean square 

value) is not defined, when T = 0. This is expected because the impulse 

response h(t) is unbounded at the time when the input is applied. 

When t » T > 0, 

This shows a logarithmic increase of the autocorrelation function as 

time increases and thus flicker noise is a nonstationary process. 

Since it is a nonstationary process, we may not use many well-

developed methods for stationary processes. We may even consider using 

a less familiar evolutionary process approach which is usually not 

successful for getting any meaningful results [1,8,9]. 

But as pointed out earlier, it is not unreasonable to restrict 

frequency to a range of interest. Consider a bandlimited flicker noise 

with the power spectral density as follows: 

Rf(t,t+T) = I In(^) ( 2 . 1 1 )  

1 
for 3 w 3 «2 |w| 

Sf(jw) (2 .12 )  

0 otherwise 

Then, it has finite power in the defined frequency range and becomes a 

stationary process. We will next compute the autocorrelation function 

of the process using equation (2.12). 
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Rf(T) = ̂  " s^(jw) dw (2.13) 

= :| [ Cj^Wgt) - c^(«^'t) ] 

where C^(z) is the cosine integral which has a following power series 

representation [12]. 

00 . ,k 2k 
C. ( 2 )  = y + In z + gzkji 2k , larg z| < ir (2.14) 

where Z is an Euler constant. 

Substituting C^(z) into R̂ (T), we have 

*f(') = Î 1 C2«!^ «V'" - ("l"'"' 1 ».15) 

Now the mean square power is defined when t = 0. Note that Rj(x) is 

only a function of t as compared to equation (2.10) which is a function 

of both t and t. 

3. Considerations on the generation of the flicker noise 

Many methods have been proposed to model a flicker noise process 

and generate a process having flicker noise-like characteristics. 

Redeka [13] reviews some of the methods. Here, we present some of them 

for a brief discussion. 
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a. Distributed RC 2 line model In the RC transmission line 

based on the diffusion equation, line impedance Z is typically written 

by ' where r and c are resistance and capacitance per unit 

length of the transmission line, respectively. If a noise current input 

is injected into the line, the spectral density of the output noise 

voltage follows the flicker noise characteristic. 

b. Halford's mechanical model (superposition of relaxation 

process) Halford considered a set of some random perturbations 

subject to certain constraints [14]. The set is characterized by P(T) 

2 and A (T), where P(T) is the probability density of perturbations with 

2 time constant T and A (T) is a mean square amplitude of perturbations 

having a time constant t. For a case concerning flicker noise, the 

following constraint must be satisfied 

P(T)A^(T) «BP (2.16) 

One choice for this is that all constants are equally probable, i.e., 

1 • f t / T 
P(T) = 1, and A(T)  = - e  , t > 0 .  H e n c e ,  t h e  s p e c t r a l  d e n s i t y  

of the set of perturbations A(T) for the time constant T is 

1+w^t* • Then, the spectral density of the set over the range of 

T from 0 to * has a flicker noise characteristics. 



www.manaraa.com

15 

izTz dT = [ Y^T tan ^(wt) ]: 
Q 1+«^T^ ^ |w| """ / ^0 (2.17) 

= î 
2 |w| 

c. Half-order integrator If white noise with a power spectral 

density S^(j«) = A is integrated m times with respect to time 

successively, then the PSD of the resulting process f(t) becomes 

= -^ (2.18) 
^ |w|2m 

If 2m = 1 is chosen, then 

= îîî (2 19) 

which is the PSD of the flicker noise. The condition m = i requires a 

notion of the hypothetical half-order integrator [9,15-17]. And this 

leads to a special case of a general mathematical concept of fractional 

order integration. 

d. Lumped-parameter approximation of impulse response If the 

problem can be solved by constructing a linear filter having a transfer 

function, H(s) = it leads to a realization by using distributed 

or lumped parameter networks. 

Our approach of the continued fraction expansion method to be 

described in the next chapter is based upon this method, in other words, 

the shaping filter method. 
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Considering the impulse response of the shaping filter with t^ 

being the instant when the input is applied, we get from equation (2.8) 

hCt.tg) = -y=^===== . Notice that hCt.t^) is not decomposable 

into a product of arbitrary functions of M(t) and NCtg) such that 

hCt.tg) = M(t)N(tQ). It is well known that a system is realizable by a 

finite dimensional linear system, if and only if the system is 

factorable as above [18]. 

For this reason, the system we consider cannot be realized by a 

linear system with finite dimension. The dimension of the system must 

be infinite. Thus, our approach is not a perfect solution but is an 

approximation and a compromise between the simplicity rendered by the 

finite dimensional system and the accuracy of the infinite dimensional 

system. 

In the next chapter, the finite dimensional linear system having a 

rational transfer function approximation is considered. We will review 

some techniques and discuss our method for doing this. 
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III. APPROXIMATION OF THE FLICKER NOISE 

A. Modeling of the Flicker Noise Process with Finite-Order System 

Ve are familiar with a rational transfer function description in 

the frequency domain which represents an output of a system driven by an 

input. Most linear system theories extensively deal with such a finite 

order transfer function of a lumped linear time-invariant system without 

having any nonlinearity, delay, or time-varying components. Since the 

transfer function approach is easy to apply and gives a reasonably good 

result to engineering problems, it has been widely used. Furthermore, 

it is readily converted into a state-space description and then its 

realization is straightforward by using known canonical forms. 

But in most cases, a process itself cannot be expressed in the form 

of a rational function. The rational transfer function is regarded as a 

linearization of a complicated system response in general. Flicker 

noise has an irrational transfer function as discussed in earlier 

sections. Its transfer function ̂  is shown in Figure 1. In the 

next section, we examine several methods to obtain a rational 

approximation for this kind of the transfer function. 

1. Staircase approximation 

The basic idea for realizing H(s) = ̂  can be described as how 

to assign poles and zeros in the complex frequency plana according to a 

rule, whatever it may be. The simplest one is just to alternate simple 
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poles and zeros on the negative real axis in the frequency plane. This 

is illustrated with the Bode plot shown in Figure 4. By doing so, 

stability and minimal phase are always guaranteed. 

To illustrate this further, let H^(s) be a transfer function of an 

approximation with poles at s = -au, i = 1, 2,..., N and zeros at s = 

-ku, i = 1, 2,..., N, and a^ < b^. Then 

\(s) = K 
(s+b^)(s+b2)(s+b2) ... (s+b^) 

(3.1) 
(s+aj)(s+a2)(s+a2) ... (s+a^) 

where K is a gain factor. 

20 log |H(jw)| 
flicker noise (H) 
approximation (H^) 

10 db/dec 
20 db/dec 

u (log scale) 

FIGURE 4. Staircase approximation 
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It is known that H^(s) in equation (3.1) is a driving-point 

impedance of an RC one-port. In order to get an exact matching, an 

infinite number of poles and zeros are required. It is practically 

impossible to specify an innumerable number of parameters. What we are 

interested in is to determine the parameters to give a good match over a 

finite frequency range. 

To determine K, au's, and b^'s properly, consider a minimization of 

an error functional in the least square sense. Since the frequency 

response at a discrete set of frequencies, {wy, j = 1, 2, ... ,M} is 

known, an error functional E can be defined with a weighting factor d^ 

at each frequency . 

E = Z d 1 ^ - K n {(wf + b^)/(u^ + au)}!/: (3.2) 
j=l J J i=l j J 

Minimizing E with respect to each parameter, we get 

I# = 0 (33) 

If- = 0 , i = 1, 2, ... , N (3.4) 
i 

= 0 , i = 1, 2, ... , N (3.5) 

The parameters are determined by solving (2N + 1) nonlinear algebraic 

equations. The main disadvantage of this least square minimization is 

that the complexity builds up fast as pairs of poles and zeros are added 

to expand the frequency range. 
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2. Approximation of spectral density function by a class of orthogonal 

functions 

The spectral density of the flicker noise S^(j«) = is 

considered instead of directly manipulating ^ . Let 

R^(x) be an autocorrelation function corresponding to S^(jw). Then, the 

key idea is how to approximate the spectral density of a random process 

2 by a set of rational functions of w , provided that R^Ct) is expressed 

by a linear combination of orthonormal functions derived from an 

"•CT ~2CT ""SCT 
exponential function set { e , c , c , ... }, c = constant. 

These exponential functions are neither normal nor orthogonal. But by 

the Gram-Schmidt orthogonalization method, a linear combination of these 

functions is systematically formed. See reference [19] for detail. 

Then, R^(T) can be written by 

N 
R.(T) = Z B # (t) , B = const (3.6) 

n=l * * * 

Since the orthogonal functions #^(T) are derived from a set of 

•ncITI exponential functions, they can be rewritten as functions of e , 

n = l ,  2 ,  . . .  , N .  

R,(T) = Z A e , A = const (3.7) 
^ n=l " " 

Then, the weighting function (impulse response) of the system can 

be fixed in the same form of equation (3.7). That is 

N 
h(t) = Z A ' e , t > 0 (3.8) 

n=l 
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where A^' can be determined from A^. Then, the corresponding transfer 

function becomes 

N A ' 

n=l 

which is a proper rational transfer function in s. Thus, the main key 

is to find a proper 'c', but it is difficult to determine 'c' for a 

considerably wide frequency range. 

3. Steiglitz's method 

Steiglitz's method [20] is based on a simple observation that 

lim ( 1 - 4 0 if I 1 - 4 1 < 1 (3.10) 
n-»« 

Equation (3.10) is expanded as a binomial series and the odd and even 

power terms in are collected separately. Let n be odd. Define 

Zn(s) with n «0 as follows: 

(:) b-"/' 
k=0,2,... 

:.(s) = j 

? (5 
k=l,3,... 

= (HVs)" - (iVs)" _2 

(14Vs)" + (l-/s)" ''s 
(3.11) 
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Then, poles and zeros of 2^(s) are located on the negative real 

axis at the following points: 

9 If IT 
zeros : = -tan (^) , k = 1, 2, ... , (n-l)/2 (3.12) 

poles : = -{tan^(^)}"^ , k = 1, 2, ... , (n-l)/2 (3.13) 

Then, the partial fraction expansion of Z^(s) becomes 

(n-l)/2 1 - P 

Since all poles lie on the negative real axis and have positive 

residues, Z^^s) is an RC driving-point impedance. Unit step response of 

1 2 
Z^(s) shows a good matching for t < 2^Tm 

B. Continued Fraction Expansion of s 

We adopt a continued fraction expansion method to get a rational 

approximation. By using this method, we show that an approximant to the 

irrational function ^ can b% generated iteratively. It can be 

considered a generalization of Steiglitz's method discussed in the 

previous section. Let P^^s) and Q^(s) be two sequences of polynomials 

in s which are coprime with each other. Let a and K be arbitrary 

constants. The polynomials P^(s) and Q^(s) will be defined as follows 

(with Pg = 1 and = 1); 



www.manaraa.com

23 

P (s) = aP„ .(s) + k\ .(s) , n = 0, 1, 2, ... (3.15) 
n n-i n-i • 

Q^(s) = sP^_^(s) + aQ^.i(s) , n = 0, 1, 2, ... (3.16) 

And form a rational transfer function R^(s). 

pn(s) 
R^Cs) = , n = 0, 1. 2, ... (3.17) 

Then, {R^^s)}^2^ is a sequence of rational functions in s. If R^(s) 

is assumed to converge to a rational function R(s), as n ^ » (this will 

be shown later), we get 

pa(s) 
Rj^(s) =0^ ' n = 0, 1, 2, ... (3.18) 

*pn-l + k'qn-1 

:fn-l + ̂ qn-1 

_fn:l2fl 
srn-1 + * 

Since it is assumed that R^(s) •* R(s), R^ ^(s) R(s) as n ^ », it 

becomes 

or 

sR^(s) + aR(s) = aR(s) + 

Solving for R(s), we get 

R(s) = ± (3.19) 
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When K = 1, we obtain the desired transfer function. This kind of a 

technique has been used in many references [21-24]-

To obtain a recursive formula for R^(s), adopt a matrix notation. 

From equations (3.15) and (3.16), we get 

= y 
a K^' 

ca s a 

(3.20) 

a 
2 /

 tn cm 1 

a , LQn-2(:)J 

a K " 
n 

'1 • 

s a. .1, 

Then, the sequence {R (s)}"_, is obtained as follows; 
n n—J. 

rgcs) = 
2 2 2 

K^s+2K a+a 

(2a+K^)s+a^ 

(3.21) 

(3.22) 

2 4 2 2 3 
, (3aK +K )s+3K a +a 

3 ' 2 2 2 3 3 
K s +(3aK +3a )s+a 

(3.23) 
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The parameter 'a' can be varied to get different approximations for 

different frequency ranges. K can be used for either gain or frequency 

response adjustment. 

From equation (3.20), define a matrix U as follows: 

U = a K 

s a 

(3.24) 

Then, the problem is reduced to finding an expression for U in s. 

Since eigenvalues of the matrix U are = a + K/s, = a - K/s, by 

using the Cayley-Hamilton theorem [18], set as follows: 

(3.25) 

1 
l-

l o
 

II + D U 
n n 

= C ' 1 0 " + D 'a 
n n 

O
 .5 a , 

C + aD K D 
n n n 

sD C + aD 
n n n 

where C and D are constants to be determined, and I is an identity 
n n ' 

matrix. 

and are determined by solving the following two equations 

simultaneously. 

' Ï  = ̂ n + °n̂ l 

= cn + 

(3.26) 

(3.27) 
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Thus, 

_ (a+K/s)(a-K/s)" - (a-KA)(a-hK/s)" 
2K/s 

= XT+X^ <^î - ^2) (3 29) 

(a+K/s)" - (a-K/s)" 
2K/s 

From equations (3.28), (3.29), and (3.25) we have 

n 
R (s) = /sf(a+K/s) + (a-KA) 1 + Kr(a+K/s) - (a-K/s) 1 

•s /s[(a+K/s)* - (a-K/s)"] + K[(a+K/s)" + (a-K/s)"] (3.30) 

n n 
_ _K (a+K/s) (KWS) - (a-K/s) (K-/s) 

/s (a+K/s)'^(K4Vs) + (a-K/s)*(K-/s) (3.31) 

Many different rational approximations are possible from equation 

2 
(3.31). For instance, let K = a. Then, we have 

{!+/(:) }"+! - {1v(|)}""̂  ̂

{!+/(;)}"̂  ̂+ {l-/(2j}"+l 
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Using the binomial expansion, we have 

'i' 

Rj^(s) = (3.32) 

,y 
k=0 * 

where [p] means the greatest integer < p , and then the highest order of 

the denominator polynomial is . 

Another form of approximation can be derived from equation (3.30) 

by setting K = 1. That is 

R (s) = _1 /sf(a-f/s)" + (a-/s)"l + [(a-tVs)'" - (aVs)"l 33, 

^ /s[(a+/sy^ - (a-/s)"] + [(a4Vs)" + (a-/s)^] 

where (^) = 0 if r > n or r<0. 

In both equations (3.32) and (3.33), 'a' can be varied so that the 

adjustment for different frequency ranges is easily made. A special 

case with a = 1 in equations (3.32) and (3.33) is given as follows: 
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'I' 

k=0 

(3.35) 

Figures 5 and 6 show the frequency and unit step time responses of 

R^(s), corresponding to equation (3.35), for various values of n along 

with the ideal response of ^ for comparison. 

1. Uniform convergence 

It can be shown that equation (3.34) is uniformly convergent in the 

2 
annular region ofD={s : 6 £ |s| ^1, 0 < 5 < 1}. The reason why we 

consider this region D in the s-domain is that it corresponds to time 

te [1, *) in the time domain. Since flicker noise is a slowly 

divergent process, we are interested in long time behavior for t S 1. 

Consider the following for 0 < |s| <1. 

= I J: 2 (l-/s)"+l , 
/s ^n+1 . / .n+1 

(14Vs) + (l-/s) 

= i _1 2 
1 + {(hvs)/(l-/s)}°+l 
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FREQUENCY RESPONSE 
FLICKER + 
RATIONAL APPROX. n=5 • 
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FIGURE 5. Frequency response of R^(s) 
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STEP RESPONSE(TIME) 
FLICKER 
RATIONAL APPROX. n=5 

n=6 
n=7 
n=8 
n=9 

o_ 

o 
o 
oo 

o 
o 
CO 

0.00  1. 00 
TIME 

2.00  3.00 4.00 

FIGURE 6, Unit step time response of R^^s) 
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Since |s| < 1, it can be expanded by a geometric series. Thus, we have 

= i _1 2 I 
1 + {(l+/s)(l+/s+0/s)2+ ... 

= I 1 2 I 
1 + {l+2/s+2s+2(/s)^+ ... 

< 1 ? 

 ̂ 1 + (1+26+20̂ + ... 

< 1  2  
^  1  +  ( 2 6 + 2 6 ^ +  . . .  

1 2 

1 + 2*̂ (̂6/(1-6)) 

Thus, equation (3.36) goes to zero, as n increases. When s = 1, it 

is exactly zero. Hence, R^(s) converges to ^ uniformly in D. As 

n gets large, R^(s) gives a more accurate approximation over a wider 

frequency range. 

2. Poles and zeros 

Let's look into some properties of R^(s) in equation (3.35) with a 

= 1. Refer to Table 1. First, it can be regarded as a generalization 

of the Steiglitz's method [20] discussed in the previous section. 

Secondly, coefficients of the numerator and denominator in every R^(s) 

alternately show coefficient patterns of the binomial expansion 

(1+s)"^^, nil. Thirdly, all poles and zeros are simple and interlaced 

on the negative real axis in the s-plane. 
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The poles and zeros of R^^s) are located in accordance with the 

following equations, and a partial tabulation is given in Table 2. 

poles: = -tan^ ~2T^ ^ , k = 0, 1, ... , [^] (3.37) 

zeros: = -tan^ , k = 1. 2, ... , [|] (3.38) 

Since poles and zeros have negative real values, the numerator and 

denominator of R^(s) are Hurwitz polynomials. Hence, R^(s) is stable 

and has a minimum phase. 

From Table 2, the poles and zeros of R^(s) with even n are 

inversely related each other. When n is odd, the poles themselves are 

self-inversely related and so are the zeros. All poles and zeros of 

R^(s) are the zeros of ^2n+l^^^* ^his can be easily verified from 

equations (3.37) and (3.38). In fact since R^(s) can be accurate in the 

frequency response for the flicker noise process over the range 

determined by minimum and maximum of the poles in magnitude, these two 

provide meaningful lower and upper frequency limits of the flicker noise 

model. For instance, Rg(s) is accurate over the range from w = 0.07 to 

13.9 rad/sec. 

If we check a ratio of maximum pole to minimum pole in magnitude, 

we find out that R^^s) with odd n covers a wider frequency range chan 

R^^^(s) whose n+1 is an even number. Thus, it may be safe to choose an 

odd n. If n is odd, then the order of denominator is greater by one 

than that of numerator of R^(s). Also, when R^(s) is converted into a 

state-space representation, it simplifies the system dynamics. Because 
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0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

33 

R^(s) ( See equation (3.32) with a = 1. ) 

r̂ (s) 

1 
1 
2 

s+1 
s+3 

3s+l 
4s+4 

s^+6s+l 

s^+10s-H5 

5s^+10s+l 

6s^+20s+6 

s^+15s^+15s+l 

s^+21s^+35s+7 

7s^+35s^+21s+l 

8s^+56s^+56s+8 

sv28ŝ +70ŝ +28s+l 

s^+36s^+126s^+84s+9 

9sV84s^+126s^+36s+l 

10sVl20s^4-252s^+120s-H0 

s^+45sS210s^+210s^+45s+l 
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it is a strictly proper transfer function, there is no. direct path from 

the input to the output of the system. And the infinite variance 

problem of the output is avoided, as it will be mentioned in the next 

chapter. 

C. Relationship of the Continued Fraction Expansion to Fade Table and 

System Theory 

It has been known that continued fraction expansion can be obtained 

from Fade approximants as a special case [21-25]. The Fade 

approximation is such as to generate a rational fraction approximation 

to the value of a function. In fact, the continued fraction expansion 

is identical to diagonal and superdiagonal elements in the Fade table. 

Refer to Table 3. In short, the Fade approximation is to match a formal 

series expansion as far as possible. 

If a function f(s) has a formal power series expansion 

Then, [m.n] one-point Fade approximant R^ ^(s) to f(s) is of the form 

f(s) = foCs) (3.39) 

k 

R 
m,n 

(3.40) 

po+pis+p2ŝ + ... +9̂ 5* 

• • •  
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TABLE 2. Poles and zeros of R^^s) ( See Table 1. ) 

n pole zero ratio 
(= |max pole|/|min pole|) 

1 

2 

3 

-  1 . 0  

- 0.33333 

- 0.17157 
- 5.82842 

3.0 

1 . 0  33.97 

0.10557 
1.89443 

9.47213 
0.52786 

17.94 

10 

• 0.07180 
-  1 . 0  
•13.92817 

• 0.05210 
• 0.63596 
• 4.31194 

• 0.03957 
- 0.44646 
• 2.23983 
-25.27407 

- 0.03109 
• 0.33333 
- 1.42028 
• 7.54862 

- 0.02509 
- 0.25962 
- 1.0 
- 3.85184 
-39.86327 

- 0.02067 
- 0.20856 
- 0.75083 
- 2.42123 
-11.59869 

3.0 
0.33333 

•19.19562 
• 1.57241 
• 0.23191 

- 5.82842 
•  1 . 0  
• 0.17157 

-32.16334 
• 3.0 
- 0.70409 
- 0.13247 

- 9.47213 
- 1.89443 
- 0.52786 
- 0.10557 

•48.37397 
• 4.79475 
• 1.33186 
- 0.41301 
-  0.08622 

193.99 

82.77 

638.78 

242.79 

1589.09 

561.08 
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The coefficients (p^ and q^) of polynomials P^(s) and Q^^s) are 

determined by 

f (s) -R (s) = (3.41) 
u m,n 

where 0 is a 'big o'. 

From equations (3.39), (3.40), and (3.41) we have 

(cq4ĉ s+c2ŝ + ... )(qq+q̂ s+ ... +q̂ s*) - (pq+p̂ s+ ... +p̂ s'") 

= 0(s**"^l) (3.42) 

Equating the coefficients of like powers of s leads to a set of linear 

algebraic equations. Normalize by setting Q^(0) = q^ = 1. Then, 

Po = Co^o (3-") 

pi = 

pz = czso+ciqi+coqz 

p. = • • • -"sim 

° = c.+140+cmqi+ ... 

" = '=»+nv=m+„-l''l-' • • • 

where = 0 if m < 0 and q^ = 0 if j > n 
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The solution to equation (3.43) is uniquely determined, provided 

that a Hankel matrix of the system is non-singular [26]. Concerning 

algorithms for the calculation of the Fade approximants, refer to 

references cited above. 

TABLE 3. Fade approximants ^(s) and continued fraction expansion 

m\n 1 0 1 2 3 1 

0 1 P
O
 

o
 
C
O
 R^Cs) 1 

1 1 RgCs) RgCs) 1 

2 1 R^(s) RgCs) 1 

3 1 RgCs) 1 

It is shown that, for accurate approximation over a finite range, 

it is best to choose m and n orders of numerator and denominator, 

respectively, to be equal or nearly equal [24]. In linear system 

theory, a transfer function f^Cs) is realizable by a finite-dimensional 

linear system, if and only if it is a proper rational function [18]. 

Thus, a typical choice of m and n to satisfy the realizability condition 

is that the order of denominator is greater than that of numerator, 
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i.e., n-m > 0. We mainly consider a case n-m = 1 among rational 

approximants. This corresponds to the superdiagonal elements in the 

Fade table (see Table 3). 

If f(s) has a Stieltjes series representation [23,24], then it 

possesses interesting properties related to the system theory. The 

Stieltjes series representation for f(s) = ^ at s = 1 is given by 

f(s) = ^ , I 1-s I < 1 (3.44) 

1 
/s{l - 4((l-s)/4)} 

= I (4̂ )" 

• I 
= I I (2%) (-s)j 

j=0 n=j " 4" 

Here, we use the identity Z (^"l x" = (l-4x) , |x| < r . 
n=0 * 

According to Bose [25], Fade rational approximants ^ ^(s) and 

R^ ^(s) have simple interlacing poles and zeros on the negative real 

axis. These two approximants corresponding to the diagonal and 

superdiagonal elements show the interlacement of poles and zeros on the 

negative real axis as shown in equations (3.37) and (3.38). A residue 

at each pole is positive. The rational approximants are of an 

irreducible form in s. Furthermore, the realization of any approximant 

R^(s) into the state-space description is controllable and observable. 
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IV. FORMULATION OF THE CLOCK NOISE MODEL AND KALMAN FILTER 

A. Description of the Clock Noise Model in the State-Space Equation 

First, we consider a realization of the flicker noise 

characteristic. From Table 1 or equation (3.32), we get an approximate 

rational transfer function Here, 'm+n' corresponds to 'n' of 

R^(s) in Table 1 (See Chapter III.) 

•"'o 

a s"+a ,s" ... +a_ 
n n-1 0 

where a = 1 when m = n-1, and a = when m = n. 
n n n+1 

The output of has an approximate flicker noise 

characteristic, when the input is a white noise. It is assumed that the 

order m of the numerator polynomial is chosen equal to n-1 in order for 

the output variance not to become infinite [3]. Then, m+n = 2n-l. It 

implies that becomes a proper rational transfer function. The 

order of the denominator of R2^_^(s) becomes [ ] = n as 

shown in equation (3.35). 

Studies have been done to realize the above rational transfer 

function into a state-space dynamic equation. Many ways of the 

realization have been known as canonical forms [18]. Among them, we 

will use the controllable canonical form to realize ®2n-l^^^" 
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Let an input white noise be w ^(t), output y(t), and the internal 

states of the system in the state-space equation be x\(t)'s, i = 1, 2, 

... , n. Then, the state-space equation takes the form of the following 

matrix equation. 

(4.2) 

0 

0 

0 

0 

-a. 

0 

0 

0 

0 

-a. 

1 

0 

0 

0 

-â  

0 

0 w.i(t) 

-a 
n-1. n 

And the output flicker noise is 

y(t) = [ bo b^ ... b^_i ] X (4.3) 

The output y(t) gives the same flicker noise characteristic as Rg^^^fs) 

does. 

Combining the white noise and random-walk noise components with the 

flicker noise approximation given in equation (4.2), we obtain (n+2) 

dimensional state-space dynamic equation. See Figure 7. Define state 

variables as follows: x^(t) = clock phase noise *(t), ^^(t) = random-

walk frequency noise, and x^(t), ... , x^^2(t) representing states of 

the flicker noise part. Then, the state-space equation is given as 

follows: 
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wgct) 

tO 

, x̂ , .. • 

w.gct) 

act) 

xi 

phase noise 9(t) 
proportional to 
time fluctuation 

FIGURE 7. Block diagram of the clock noise model 

f ' *' 

*1 

% 
0 1 cr

 
o

 

^2 
0 0 0 

*3 
— 0 0 0 

*n+l 
0 0 0 

*n+2 0 0 -*o 

Or 

X = Ax + W 

bn-l 'wo(t) 

0 ^2 
w.2(t) 

0 *3 
+ 0 

1 *n+l 
0 

"*n-l ^ *n+2 
^ J 

W.j(t) 

(4.4) 
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And the output y is 

y(t) = [ 1 0 ... 0 ) X 

Let us examine eigenvalues of the system first. 

an algebraic equation. 

det [XI - A] = X^(X" + a + ... +3.) 
^ n-1 0 

= X^F(X) 

= 0 

The eigenvalue at X = 0 with multiplicity two is due to two integrators 

in the system. The other eigenvalues of F(X) = 0 are from the flicker 

noise modeling. It was mentioned in the previous section that roots of 

the denominator polynomial in any Fade table entry are all distinct: so 

are the roots of F(X) = 0. See Table 2. Thus, with X^'s such that 

F(X^) = 0, i = 1, 2, ... , n, we have 

F(X) = X* + a^ ^X""l + ... + a^ (4.7) 

= (x+xpcx+x̂ ) ... (x+x̂ ) 

Because of this distinctness it is better to reorganize the system 

and make the system decoupled. To do so, we start from the rational 

transfer function again. The transfer function in equation (4.1) is 

rewritten by the partial fraction expansion into a sum of terms of a 

form so that the system is of a parallel structure. Let 
i 

be a gain factor corresponding to a block. Then, we have a 

block diagram as shown in Figure 8. 

(4.5) 

To find them, form 

(4.6) 
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The advantage for doing this is twofold. First, the system 

configuration becomes less sophisticated. State variables may be 

assigned easily according to the size of eigenvalues. Secondly, we may 

delete some state vectors which have very large or small time constants 

and thus they are negligible in the overall system performance in a 

certain period of time. Or we can identify important system modes and 

understand the system better. Hence, the dimensional reduction of the 

system may be easily achieved. 

From Figure 8, we have a new state-space dynamic equation. 

X = 

1 

0 

0 

0 

0 

0 

0 

1 

0 

-X 

0 

0 

0 

0 

1 

1 

0 

0 

-X, 

0 

0 

0 

0 

0 

0 

0 

0 

X + 

w 

v -1 

And the output y is given by 

y = [ 1 0 . . . 0 ] X 

where x = [ x^ x^ ... x^^^ 

(4.9) 
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s+X 

s+X 
•n+2 

1 
s 

FIGURE 8. Block diagram of parallel realization of clock noise model 
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B. Formulation of Kalman Filter and its Parameters 

We start from the system equation obtained in the previous section. 

X (t) = Ax(t) + W(t) (4.10) 

The solution x(t) to this differential equation is given by 

x(t) = §(t-tQ)x(tQ) + $(t-T)W(T) dt (4.11) 

where §(t) is the state transition matrix of the system and t^ is a 

starting time. 

(n+2) dimensional system, $(t) is given as follows: 

*(t) = L"^ [SI-A]"^ (4.12) 

= l - 1  

s 

0 

0 

0 

0 

l 0 

- 1  

s 

0 

0 

0 

0 

- 1  

0 

s+xj 

0 

0 

0 

• 1  

0 

0 

s+X, 

0 

0 

- 1  

0 

0 

0 

0 

s+X 

- 1  

n • 

where L denotes an inverse Laplace transform. 
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Using a matrix inversion identity [27], we get 

$(t) = 

t 

1 

0 

0 

0 

0 

e'̂ lt 

0 

0 

0 

0 

0 

e-v 

0 

0 

I (l-e"V)' 
n 

0 

0 

0 

0 

-X t 
e n 

Since the Kalman filter usually takes a discrete form, equation 

(4.11) is discretized. At time t^^^ = (k+l)At, with At = time 

increment, becomes 

X(VL) = - \)X + - OW( t )  dT 
k 

k̂+1 
= $(At)x(t^) + J §(tj^^j - x)W(T )  dx (4.13) 

In short, we have 

xk+1 = $3% + "k (4.14) 

YK = HX. (4.15) 

where w, is defined as follows: 
—k 

k̂+1 
Wfc = /t *(tk+i - t)W(t) dt (4.16) 

k 

and 

i = §(At) (4.17) 
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To set up the Kalman filter equations, some definitions and 

assumptions are necessary [3]. Tlxey are listed below. 

= (n+2) state vector at time t^, k =0, 1, 2 ,  . . .  

i = (n+2)x(n+2) state, transition matrix 

Wj^ = (n+2) white noise sequence vector with zero mean 

z, = a scalar measurement at time t, 
k k 

V, = a scalar measurement error with zero mean which is a white 
k 

noise sequence and uncorrelated with w^ . 

Then, the covariance matrix for w^ is 

E , i = k (4.18) 

0 , i # k 

where T is a transposition. The covariance matrix for v^ is 

E [v^v]^] = , i = k (4.19) 

0 , i ̂ k 

And the uncorrelatedness between w^ and v^ is assumed so that 

E [w^vT] = 0 , for all i, k > 0 (4.20) 

With these definitions and assumptions, define an error e^ between the 

* 

state x^ ani its estimate x^. For convenience, drop bar signs in the 

vectors x, and w, . Then, 
-k —k 

* 

e, = X, - X, (4.21) 
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The error covariance matrix is given by 

Pfc = E [e^e^J (4.22) 

* * 

= E [ (Xj^ - x^) (x^ - x^) ] 

Based upon the definitions above, the Kalman equations are given below 

without any derivation. For detail, see reference [3]. 

Kalman gain : K^ = (4.23) 

it * * 

State estimate : x^ = x^ + K^ (z^ - Hx^) (4.24) 

Error covariance : P^ = (I - K^H)P^(I - K^H)^ - K^R^K^ (4.25) 

* * 

Projection ahead : x^^^ = §x^ (4.26) 

where a super minus denotes 'a priori' information. 

The covariance for w^, Q^, is calculated by 

Qk = E [wj^wj ] (4.28) 

t t 
= E [{ ^(\+i -u)W(u) du }{ - V)W(V) dv T] 

k k 

^V+1 T T 
= /t E [ W(u)W (v) ] i (t^^^ -V) du dv 

k 

From equation (4.28), define W' as follows: 

E [ w(u)w'^(v) ] = W'6(u-v) (4.29) 
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w = 

n, 
^w 0 

k.k.sf k^s; 

klknsf 

kl^nsf 
V V n 
"2"n*f 

where S^, S^, and denote spectral amplitudes for white, flicker, and 

random-walk noise, respectively, as defined in Chapter I. 

Then, we have 

t 
\ *(^k+l -u)W'$T(tk+i - u) du (4.30) 

Setting t^^^ - u = t and t^^^ - t^ = At, we get 

At 
R.XT, Qj^ = /q $(t)W'*'(t) dt 

After carrying out manipulation, we have 

2 n columns 

II 

2 rows (4.31) 

% n rows 

where e Qg e and e 
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Each entry of the Q matrix is given by 

n n K.K. . -X.At , -X.At 

vu-." -

1 J 

sa.12 = s, W 

n . , -X.At -(X.+X.)At 

Vij = A • V/ 
L-i 1 J 1 J 

^b,2j ° 

'xv'" ®i 

Note that we can obtain an exact expression for of by using 

a method shown in the equation (5.3.14) of reference [3]. From the 

transfer function diagram (Figure 7), we get x^(t) as follows: 

Xj^(t) = WgCt) * u(t) + w ^(t) * 2 /(^) + w_2(t) * t (4.32) 

t t 
= S w_(t-u) du + 2 / /( ) w .(u) du 

0 0 ' 
t 

+ I (t-u)w -(u) du 
0 

where u(t) is a unit-step function. 
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Then, is given by 

^kll ~ ̂  [ *1^^) ] t=at 

And 

2 t t 
E [ X.(t) ] = / J S ô(u-v) du dv 

0 0 " 

, t t 
+ - / I /((t-u)(t-v)) S, 6(u-v) du dv 
' ^ 0  0  ^  

t t 
+ f I S (t-u)(t-v) du dv 

0 0^ 

^ 2 ^ ^ 2 = / S du + - / (t-u) S- du + / S (t-u) du 
0 " ^ 0 0 ^ 

2  2  1 3  
= Swt + ; Sf t + s, 5 t 

Therefore, 

\ll = + # Sf(At)2 + |(At)3 (4.33) 

Comparing equation (4.31) to equation (4.33), it shows that the 

former is just an approximation of the latter, especially the second 

term due to the flicker noise. In the former, the result is derived 

from the finite dimensional system, while the latter is directly 

obtained from the original flicker noise process. Rj^ can be determined 

by considering the measuring equipment accuracies and environmental 

conditions. 
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C. Error Analysis and Suboptimal Filtering 

In this section, our objective is to study the error accumulation 

in the clock noise model. To do so, two types of error analysis methods 

are commonly used - Monte Carlo simulation and linear error analysis 

[3,28,29]. In a Monte Carlo simulation, the effect of the 

nonlinearities on the filter error.s and the effects of approximations in 

the filter equations are determined. But it requires a large number of 

simulations to determine the error statistics. In a linear error 

analysis, the Kalman filter equations are used to propagate the error 

covariance along with state estimates. It is an advantage that only one 

computer run is necessary to get the desired error statistic. It is 

more economical than the Monte Carlo method in the light of computer 

run-time and/or in a real-time operation. Since we have developed the 

Kalman filter equations in the previous section, we will use the second 

method for the study of the error statistics. It was shown that the 

error covariance matrix can be propagated without forming state 

estimates in the Kalman filter equations [3]. Hence, less steps can be 

taken in the loop of the Kalman filter equations by skipping steps of 

the state estimation. Refer to Figure 9. 

However, because of the presence of the flicker noise and its odd 

power processes the ideal clock noise processes are only expressed by an 

infinite number of state variables. The finite dimensional state-space 

equation is far from a true model for the clock noise processes. Thus, 

the Kalman filter may be non-optimum in the sense of least square error, 

even though it may be regarded optimum in our finite dimensional state-
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Enter loop Enter loop 

with P with P Os 

suboptimal gain 
sequence 

k+l,t k+l,t k+1,s 

'kt 

'ks kt ks 

kt 

2 - State model truth model truth model 
with suboptimal gains with optimal gains 
((n+2) state model) ((n+2) state model) 

FIGURE 9. Recursive loop for suboptimal error analysis 
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space equation. It is just an approximation with Cn+2) dimensions to 

the ideal one. If accurate behavior of the flicker noise is essential, 

then the dimension n must be very large to closely imitate the flicker 

noise process. To accomplish this, the dimension of the matrix in the 

Kalman filter equations becomes so large that the real-time operation 

may be extremely difficult or impossible due to a heavy computational 

burden. 

Let us call this (n+2) dimensional filter a truth model even if it 

does not mean a true model in a strict sense. The terminology "truth 

model" is common in the Kalman filtering [3,30]. Sometimes it is wise 

to consider a subset of the system components by selectively choosing 

state vectors and thus reduce the dimensionality of the overall system. 

It is called a suboptimal filter (or a reduced order filter) [3,29,30] 

with less dimension than the (n+2) dimension of the linear optimum 

filter. The suboptimal filter is formed by retaining the state vectors 

which represent significant modes of the system and discarding less 

significant ones. In our case, the first two state vectors are chosen 

in the state-space equations (4.14) through (4.33). 

That is 

(4.34) 

(4.35) 

'V = 
" o  r 

+ 

>*2' so 0. 
*2 ' «^2 • 

y = [ 1 0 ] x 



www.manaraa.com

55 

As mentioned earlier, the random-walk noise is more divergent than 

the flicker noise. Actually, the flicker noise is logarithmically 

divergent [13] as discussed in the Chapter II. Since we are interested 

in the long-term behavior of clock error due to these noise processes, 

the above facts can be utilized to choose noise components, w^ and Wg, 

properly. The white noise may be retained to represent instantaneous 

fluctuations in the system. Based on the above discussion, hence, only 

the white and random-walk noises may be considered excluding the flicker 

noise whose characteristic is in between the other two. We will 

consider this further in next chapter. 

To assess an error in the suboptimal filter, the truth model Kalman 

filter is run with suboptimal gains. See the procedure in Figure 9. In 

Figure 9, the optimal gain is a gain matrix of the truth model Kalman 

filter. And the suboptimal gain is a gain matrix of the two state 

suboptimal Kalman filter. If the suboptimal and truth model filters are 

running together in parallel, we can obtain a good comparison of the 

error propagation and determine whether the presence of the flicker 

noise is important or not. If it turns out that the flicker noise does 

not affect the error propagation much compared to others, then it may 

provide a good justification to ignore it in the suboptimal filtering. 

And the suboptimal filter may be used in real applications. See the 

different suboptimal mechanization in reference [31,36]. 
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D. Analysis of Optimal Prediction Error by the Bode-Shannon Method 

Optimal prediction error for the clock phase error which 

corresponds to the time fluctuations x^(t) in the Kalman filter 

equations can be obtained by predicting N steps ahead of the projection 

[3,32]. That is 

P(k+N|k) = *k+N,kf(k|k^*k+N,k \+N,k (4.36) 

where 

* 

P(k+N|k) = error covariance associated with x(k+N|k) 

... , = state transition matrix for time interval from t, to t, 
k+N, k k k+N 

^k+N k ~ covariance of the driven response for time interval 

from t̂  to t|̂ +H 

P(k|k) = filter estimate and its error covariance at tj^ 

If we look into the above equation, we find out that the 

computation of i and Q is needed every time when a prediction step N is 

changed. It is wasteful in time and storage for recomputing or storing 

different §'s and Q's when the step N is changed. The Bode-Shannon 

method provides an alternative for this [33,34]. The optimal prediction 

error can be analytically obtained by the direct application of it. 

In our shaping filter approach, each noise process is generated 

from an independent white noise source. Thus, output noises are 

mutually independent. The uncorrelatedness of three noise processes 

assures the application of the B-S method to each noise separately. 
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We follow the method closely for finding the optimal prediction 

error due to the flicker phase noise. For the other two noises - white 

and random-walk noises - the same procedure is applied to find the 

optimal prediction error. General procedure can be described as 

follows. 

Let us consider two transfer function boxes Y^(s) and Y^Cs) whose 

outputs are the white noise and a seconds-delayed replica of the input 

flicker phase noise, respectively, as shown in Figure 10. The problem 

is to obtain the best estimate of f(t+o) from f(t), when there is no 

system perturbing noise present. 

f(t) Y^Cs)  ygcs) 

output 

xCt)=f(t+a) 

flicker phase noise 

1 
*2 

with PSD S^(ju)= g 

white noise 

w(t) with S^(j«)=l 

FIGURE 10. Block diagram for pure prediction problem for flicker noise 

We follow the steps in the Bode-Shannon method [33,34]. First, we 

determine Y^(s). Let 

Y^( jw)  =  I Y j ( j« )  I 
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Since 

sf(jw) i y^(j«) = 1 

we have 

Yi(j«) I = 7s ^ 
f 
(jw) 

= (4.37) 

And the phase-shift function of Y^(s), f^(w) is given by 

^ ^0 - w 

_ 3(0 ,» In v - In w 

= m 
4 

Therefore, 

Y^(jw) = /w^ ej(3*/4) 

Or 

Y^(s) = s/s (4.39) 

-2 Let K(t) be the inverse Laplace transform of (s). Then, 

K(t) = [ Yj^(s) ] (4.40) 

= 2 /(t) 
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Secondly, construct a filter whose impulse response is 

K'(t) = KCt+a) , for t > 0 (4.41) 

0 , for t < 0 

Then, the transfer function Y^Cs) is defined by 

YgCs) = L"' [ K'(t) 1 (4.42) 

= r 2 dt , a > 0 
0 ^ 

1 
= 2 erfc(/(sa)) , o > 0 

The optimal predictor then has a transfer function 

1 sb 
Y^CsyYgCs) = s/s [ 2 /(2) g + ̂  erfc(/Csa)) ] , a > 0 (4.43) 

= 2 /(̂ ) /s + ê " erfc(/(sG)) 

This optimal predictor is quite complicated. It may not be useful for 

real applications. However, this method specifies how to find a mean 

square prediction error. Since the input to Y^(s) is a white noise and 

there is no information available for the o-second interval, the 

prediction error is due to the noise of this interval. Thus, 

E [ e^ ] = K(u) K(v) 6(u-v) du dv (4.44) 
* 0 0 

= K^(u) du 

= y 4 - du 
0 ^ 

2a^ 
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Similarly, for the random-walk phase noise, we have 

Optimal predictor : Y^fsjYgCs) = 1 + os (4.45) 

2 13 
Prediction error : E [ e^ ] = - o (4.46) 

For the white phase noise, we have 

Optimal predictor : Y^(s)Y2(s) = 1 (4.47) 

2 
Prediction error : E [ ] = o (4.48) 

Combining these processes with proper input noise powers, we get the 

optimal prediction error 

E [ a + Sf I I (4.49) 

From equation (4.49), we find that the prediction error is 

dominated by the random-walk noise as time goes on. For a long range 

prediction, it is sufficient to consider the random-walk noise only. 

When this result is incorporated into the discrete Kalman 

equations, we can rewrite equation (4.49) with a step size At seconds 

and the projection ahead N steps, i.e., o = N&t. 

3 
E [ e^ ] = NAt + I (NAt)^ + (4.50) 

For example, with same input powers in three noise processes and At = 1, 

the random-walk phase noise becomes 10 times bigger than the flicker 

phase noise after 18 steps. The result in equation (4.50) coincides 

with that of equation (4.33). 
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V. APPLICATIONS 

A. Numerical Example 

In this section, we compare the behavior of the truth model and 

2-state suboptimal model described in the last chapter. For this, we 

select a 5-state truth model whose time response closely follows the 

flicker noise, approximately from 0.07 to 13.9 seconds, corresponding to 

the eigenvalues {-0.0718, -1, -13.9282} of R^Cs) in Table 2. Also see 

Figures 4 and 5. Because of the choice of the 5-state model, choose a 

step size At = 1 which belongs to this time interval. Then, the 2-state 

suboptimal model is constructed from the 5-state truth model 

accordingly. 

To program the Kalman filter recursive equations, we must first 

determine the filter parameter values. Since we do not have any prior 

* 

knowledge about a priori estimate, x^ = 0, we sat = 0 in both 

cases. Concerning the measuring equipment noise susceptibility, we 

assign an appropriate value to R^. In this example, we choose R^ = 

-17 0.625 X 10 in both the truth and 2-state models. In order to 

calculate Q matrices, the parameters hu's in Figure 11 are used. They 

-20 -19 -21 
are h^ = 9.43 x 10 , h_^ = 1.8 x 10 and h_^ = 3.8 x 10 
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1. 5-state truth model 

/ s 
^1 

1 

0 

0 

0 

0 

1 1 1 

0 0 0 

-x^ 0 0 

0 
i. 

0 0 -X, 

•x2 0 

rx. w 
-0  

w 

^l"-l 

V-1 

s"-1 

(5.1) 

where 

= 3.57265x10"^, ^ = 4.97607 

X^ = 7.17967x10"^, Xg = 1 , X^ = 13.9282 

And the output is 

y = [ 1 0 ] X (5.2) 

State transition matrix § is given as follows: 

§ = 

1 

0 

0 

0 

0 

At Y (l-e'^l^t) i (l-e"^2^^) ̂  (l-e"^3^^)' 
1 2 3 

0 e-^lat 

0 

0 

0 

0 

e"^2at 

0 

0 

0 

e-^sat 

(5.3) 
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1 

1 

0 

0 

0 

0.9649 0.6321 0.0718 

0 0 0 

0.9307 0 0 

0 0.3679 0 

C 0 0.8934x10 
-6 

From equations (4.31) and (4.33), Q is given by 

Q =  

4.306 0.3747 1.453 1.611 0.5027 

0.3747 0.7501 0 0 0 

1.453 0 0.6724 0.8628 0.7231 

1.611 0 0.8628 1.088 1.266 

0.5027 0 0.7231 1.266 5.097 

(5.4) 

X 10 
•19 

For computation of Q matrix, numerical values of h^'s are obtained from 

Figure &fig51.. 

a. Numerical aspects on the calculation of i and Q matrices 

There are a few points to be mentioned for computing the § and Q 

matrices. Since the eigenvalues of the A matrix, excluding an 

eigenvalue at zero with double multiplicity, in equation (4.6) are 

aâts 
widely dispersed, it is difficult to directly compute I = e from a 

power series expansion of the exponential matrix function due to a 

roundoff error. Let IX I and |X . 1 be the largest and smallest ' max ' mm' 

eigenvalues in magnitude, respectively, among eigenvalues . Then, if 

X 
iy^—i is much larger than one, the power series expansion should 
min 

not be used [35]. 
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^z,r \Jpji(r)/t 

Medium quality clock 

o  " 9  10" 

High quality clock 

6.492 x 10" 

1-11 
100 1000 

FIGURE 11. The h parameters for typical crystal oscillators 
(taken from reference [31]) 
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But in our case, we have an analytic expression of i given by 

equation (4.12). It is preferable to use equation (4.12) after finding 

eigenvalues of the A matrix. Concerning the Q matrix, it is easier to 

determine the I and Q matrices for a tiny fraction of At and follow the 

method suggested in reference [3]. 

2. 2-state suboptimal model with different Q matrices 

*1' = 
0 1 

+ '"l' 

. *2 
.0 0 . 

*2' »*2, 

(5.5) 

The output y is 

y = [ 1 0 ] X 

Then, the state transition matrix f is given by 

f = r 1 At 

0 1 . 

1 1 ' 

LO 1 . 

(5.6) 

(5.7) 

Determination of the Q matrix in the 2-state suboptimal filter is 

crucial to closely follow the behavior of the truth model. We will 

consider four candidates for the Q matrix and then look at the clock 

error propagation in the suboptimal filter. This will aid in the 

selection of a proper Q matrix which best fits the suboptimal model. 
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Four candidates for the Q matrix are chosen as follows: 

1. We adopt the upper left (2x2) elements of the 5-state Q matrix. From 

equation (4.31), we have 

Q =  s^at + fs^(at)^ + fs^(at)^ 

|s^(at)2 

|s,(at): 

s^at 

(5.8) 

|hQAt+2h_ ̂ (At ) ̂+|2iT^h_2 (At)3 

2 2 

a_2(at)^ 

2tr\_2at 

4.306 0.3747 

0.3747 0.7501 

X 10 
-19 

2. The second candidate is obtained by deleting a flicker noise 

component, since it is less divergent than a random-walk noise and 

usually complex to represent. Then, the Q matrix does not contain any 

term related to the flicker noise. 

Q =  s^at4is^(at)3 

(at)2 
k z r 

|s,(at): 

s At 
r 

(5.9) 

|hqat+|2tr^h.2(at)^ 

A_2(at)^ 

a.2(at)2 

0.7215 0.3747 

0.3747 0.7501 J 

X 10 
-19 
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3. In reference [31], a different Q matrix is suggested for the same 

2-state suboptimal model. 

Q =  |hQAt+2h_ ̂ (At ) ̂+|2ii^h_2 ( At ) ̂ 

2h_jat+ir^h_2(at)^ 

2h_^at+a_2(at)^ 

^hq+2h.i+|a.2at 

(5.10) 

4.322 

3.975 

3.975 

5.072 

X 10 
•19 

4. In reference [36], another form of the Q matrix is reported. It is 

given by 

Q =  ' |hqat+2h_^(at)^+|2a_2(at)-

2h_jat+a_2(at)' 

4,322 

3.975 

3.975 

0.7501 

X 10 
-19 

2h_^at+a_2(at)^ 

2n^h gat 

(5.11) 

With these different Q matrices, Kalman filters of the 5-state and 

2-state suboptimal models are run in parallel. See Figure 9 for the 

suboptimal error analysis. 
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3. Discussion 

Estimation error standard deviations for 170 steps have been 

plotted in Figure 12. From t = 0 to t = 49At with step size At = 1, it 

is assumed that no measurement is available for a 'free running' 

purpose. From t = 50At to t = 69At, measurement starts for estimation 

-17 
and is set to 0.625 x 10 It shows that, after several steps, the 

standard deviations rapidly converge to a constant value. At t = 70At, 

filters are again in the free running mode for the next 100 steps. 

From Figure 12, we may say that every candidate of the 2-state 

suboptimal model shows no big departure from the 5-state truth model 

except the third one among four Q matrix candidates. The third one is 

slightly larger, but not noticeable in the plot. This is expected since 

of the Q matrix has the same formula as each candidate. In Figure 

13, the suboptimal error analysis is performed with 6th order (6-state 

truth) model. This consistently agrees with results of the 5-state 

truth model. 

Prediction error standard deviations of both the 5th and 6th order 

truth models do not show much departure from each other in case of time 

step size At= 1. See Figures 14 and 15. Deviation of prediction errors 

from the optimal one obtained by the Bode-Shannon method is about 30 % 

greater at the prediction of 80 steps. Table 4 gives the RMS prediction 

error comparison between the 5th and 6th order truth models. 

In the Q matrices for the 2-state model, all candidates except the 

third have same prediction errors and closely follow the truth model as 
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SUBOPTIMAL I X 
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O 
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1 1 1 1 
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FIGURE 12. Suboptimal error analysis with 5th order model 
(estimation) 
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FILTERING WITH 6TH 
FLICKER 
SUBOPTIMAL I 

Z 

t—i 

uj _ 
a 

œ = 
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o 

12. 00 0. 00 8 .00 4. 00 
UNIT STEP 

16.00 
(xlO* J 

FIGURE 13. Suboptimal error analysis with 6th order model 
(estimation) 



www.manaraa.com

71 

TABLE 4. Comparison between the 5th and 6th order models for 
prediction 

Time lapse 5th order 6th order 
(steps) 

10 0.2153x10 0.2146x10 

20 0.3606x10" 0.3598x10" 

30 0.5273x10"^ 0.5263x10" 

40 0.7120x10"^ 0.7302x10" 

50 0.9124x10' 0.9114x10* 

60 0.1127x10"* 0.1126x10"* 

70 0.1354x10"* 0.1355x10"* 

80 0.1594x10"* 0.1596x10"* 

in the estimation case. In the third candidate, the prediction error 

becomes slightly larger than any others after 80 steps. Only in the 

second candidate, the prediction error is slightly less because of the 

absence of the flicker noise component in the Q matrix. This tells us 

that the long-term effect due to the flicker noise is negligible in most 

cases (t k 1). 
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FIGURE 14. Suboptimal error analysis with 5th order model 
(prediction) 
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PREDICT WITH 6TH 
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FIGURE 15. Suboptimal error analysis with 6th order model 
(prediction) 
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B. Application to the Global Positioning System 

Our clock noise model can be applied to the Global Positioning 

System (GPS) [37,38] which enables a user to locate his or her position. 

In the GPS, users have ordinary quartz clocks which are less accurate 

than precision atomic clocks installed in the satellites. The user 

clock experiences some drift and develops clock bias with respect to a 

satellite clock. The clock bias introduces a positioning error in the 

user system. 

To apply the developed clock model to the GPS, consider a 

stationary user case, for simplicity, in the earth centered inertial 

coordinate system as shown in Figure 16 [37]. 

z user (x,y,z) 

i th satellite 

y 

X 

FIGURE 16. Earth centered coordinates 

Let a user position be (x,y,z) and let t^ be a clock bias. Assign 

state variables x^'s to x, y, z, and tj^ such that x^ = Ax, x^ = Ay, x^ = 

Az, and x^ = At^, where A is an increment from nominal values. Then, 
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the dynamics are given by the following equation. 

5+n 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 0 

0 0 

0 0 

1 

0 

0 

0 

0 

1 

0 

0 

•^n^*5+n L ^n"-l-

w 

w 

w 

w. 

w 
- 2  

^l"-l 

(5.12) 

where w^, w^, and are noises in the x, y, and z axis, respectively. 

In equation (5.12), the lower right of the system matrix is identical 

with that of equation (4.8) of the clock noise model. 

Before setting up a Kalman filter equation, consider a measurement 

equation z^. To do this, start from a range distance in Figure 16. 

= [ (x-x^)2 + (y-y\)^ + (z-z^)^ +ct^ 

where c is the velocity of light. 

(5.13) 

Let (XQ, y^, ZQ) be the nominal position and Ax, Ay, Az be 

increments on the user position (x,y,z) from the (x^, y^, z^), 

respectively. And let At^ be an increment on t^ from the nominal ty . 
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Then, by linearizing equation (5.13), we get 

where a is the direction cosine of the angle such that 

*i 

x-x. 
a = i 
^i pi-ctb 

With this fact, we have the following Kalman filter parameters with 

time step size At. 

State transition matrix $ is given by 

-

10 0 

0 10 0 

0 0 1 

0 from eq. (4.12) 

with t = At 
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Q matrix is given by 

y 

0 s 

from eq. (4.31) 

(5.16) 

where S^, S^, and are spectral amplitudes of x, y, and z axis noises, 

respectively. 

H matrix is determined from equation (5.14). 

H = 
% \ °=2 

c 

c 

c 

0 

0 

0 

0 

0 

0 

0 

(5.17) 

Initial conditions are as follows: 

= i 0̂ 0̂ 0̂ s. 

po = o 

0 ] (5.18) 

(5.19) 

We can use the results obtained in Chapter IV to compute the i and 

Q matrices in equations (5.15) and (5.16). 
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In this section, we have shown that the state modeling of clock 

noises is imbedded into the Global Positioning System. The 

simplification used in the truth and suboptimal models is sufficient for 

describing the ̂  noise in the GPS application. 
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VI. CONCLUSION 

In this paper, state model of clock noises and corresponding Kalman 

filter mechanization have been studied. The clock noise Is typically-

expressed as a sum of the three noise processes - white, flicker, and 

random-walk noises. Among these three, our main concern is how to 

implement the flicker noise process, since it involves the realization 

of a shaping filter which is best described by an irrational transfer 

function 

It is shown that ^ can be approximated with a rational 

function in s by using the continued fraction expansion method. With an 

aid of this method, the rational approximations are 

sequentially generated, whereas other methods such as least square 

approximations require the solution of nonlinear equations for the 

optimization. Steiglitz's method [18] discussed in Chapter III can be 

considered as a special case of the proposed method. The rational 

approximations were realized in this analysis with a bank of parallel 

first-order filters. 

In {R^(s)}, the numerator and denominator of R^(s) are Hurwitz 

polynomials. Furthermore, R^(s) is stable and has a minimal phase. 

Poles and zeros of R^(s) are located on the negative real axis which is 

a branch cut of The poles of Rg^ ̂ (s) are more widely dispersed 

than those of Rg^Cs) and thus it is a little simpler to implement and 

preferable to get a good approximation over a wider frequency range. 
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When n is even, R^(s) is proper. When n odd, R^(s) is strictly proper. 

In the use of {R^(s)}, the size of n can be chosen relatively small, if 

Rjj(s) covers only few decades of the frequency or time interval. The 

realization of R^(s) is controllable and observable. 

Based upon this approximation, i.e., ^(s) plus the white and 

random-walk noises, the Kalman filter equations for the clock noise 

model were constructed in Chapter IV. To assess the clock error 

propagation with time, the error analysis was performed. A simplified 

2-state suboptimal filter was run in parallel with a truth model Kalman 

filter of dimension (n+2) for the comparison study. In case of the 

clock error prediction, the optimum prediction error and optimum error 

predictor were analytically obtained by using the Bode-Shannon method. 

The optimum prediction error formula coincides with of the truth 

model Q matrix, and it was compared with prediction errors obtained from 

the Kalman filters. The optimum prediction error clearly yields a 

smaller increase when compared to the truth or 2-state suboptimal 

models, as time passes. At t = 80 steps, with step size At = 1, the 

Kalman filter prediction estimates become 30% larger than the optimal 

estimate, which could be too large in some applications. 

It shows that for a long-term behavior (t 2: 1), the random-walk 

noise component dominates the other two noise processes. This agrees 

with the fact, mentioned in Chapter II, that the random-walk noise is 

more divergent than the flicker noise process. Hence, the effect of the 

flicker noise is negligible for the long-range estimation and prediction 

of the clock error in the 2-state suboptimal filter. This suggests how 
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to pick a Q matrix in the 2-state suboptimal filter. A simple choice of 

the Q matrix for the 2-state suboptimal model is just to take most upper 

left (2x2) submatrix of the already developed higher-order truth model Q 

matrix. 

Many researchers have tried to imbed the effect of the flicker 

noise process into the Q matrix in the suboptimal filter, even though 

there is no flicker noise component in the suboptimal filter. From the 

comparison study, it was found that the Q matrix in the 2-state model 

can be prescribed by only considering the white and random-walk noise 

processes without degrading the overall performance much. It was also 

found that the Q matrix parameters were not especially critical for both 

the filter and predictive estimators. 

The truth and suboptimal models with appropriate Q matrices can be 

applied to the GPS user receiver systems as discussed briefly in Chapter 

V and to any precise clock system. 
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VII. FURTHER STUDY 

1. As one of the author's committee members pointed out, study on 

a time series of clock error due to real clock noise is needed. It can 

be carried out with a spectrum of the time series. From the time 

series, the flicker (1/f noise) portion of a spectrum of data can be 

obtained and studied. By doing so, a good comparison of the developed 

model of 1/f noise with real clock noise may be obtained. 

2. Study between the continued fraction expansion method and other 

methods briefly discussed in Chapter III is needed in various ranges of 

frequency. 

3. The developed clock model must be tested in real situations with 

various cases, i.e., satellite failures, coarse clock systems, and so 

on. 
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X. APPENDIX 

The following listings illustrate sample error analysis programs 

for the 5th order and 2-state suboptimal models. In the program, the 

Simplotter subroutine is used for plotting. 

This is an estimation portion of the error analysis program. 

//ESTMATE5 JOB 16954,AHN 
//STEPl EXEC FORTGS 
//FORT.SYSIN DD * 

DOUBLE PRECISION TIME,T,SUM,SUMT,E1,E2,FS,FT,PHIS,PHIT,HS,HT, 
1 QS,QT,RS,RT,GS,GT,GO,PNS,PNT,PNO,TSTEP, 
2 PPS,PPT,PPG,HPRS,HPRO,HG,RGT,SDPPO,SDPPTl, 
3 SDPPT2,SDPPT3,SDPPT4,ERROR,ESUM,PRDERR 
DIMENSION E1(5,5),E2(5,5),FS(2,2),FT(5,5),PHIS(2,2),PHIT(5,5), 

1 HS(2),HT(5),QS(2,2),QT(5,5),TSTEP(280),SDPPO(280), 
2 GS(2),GT(5),G0(5),PNS(2,2),PNT(5,5),PN0(5,5),PPS(2,2), 
3 PPT(5,5),PPO(5,5),HG(5,5),RGT(5,5),PRDERR(290), 
4 SDPPTl(280),SDPPT2(280),SDPPT3(280),SDPPT4(280) 

C 
C T=TRUTH MODEL, S=SUBOPTIMAL MODEL, 0=0PTIMAL 

C 
0 GET THE INITIAL DATA. 

N0=5 
NT=5 
NS=2 

TIME=1.D0 
ISTEP1=50 
ISTEP2=70 
ISTEP3-170 

G 
C INITIALIZE THE IDENTITY MATRIX. 

DO 500 1=1,NT 
DO 500 J=1,NT 

E1(I,J)=0.D0 
500 E1(I,I)=1.D0 

C 
C READ THE INPUT MATRICES. 
C READ THE SYSTEM MATRIX OF SUBOPTIMAL SYSTEM. 

DO 510 1=1,NS 
510 READ(5,550) (FS(I,J),J=1,NS) 

C 
C READ THE STATE TRANSITION MATRIX OF SUBOPTIMAL SYSTEM. 

DO 520 1=1,NS 
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520 RÉAD(5,5S0) (PHIS(I,J),J=1,NS) 

G 
G READ THE H AND R MATRICES OF SUBOPTIMAL SYSTEM. 

READ(5,550) (HS(I),I=1,NS),RS 

550 F0RMAT(4D16.7) 
G 

G 
G READ THE SYSTEM MATRIX OF THE TRUTH MODEL. 

DO 560 1=1,NT 
560 READ(5,550) (FT(I,J),J=1,NT) 
G 
G READ THE STATE TRANSITION MATRIX OF THE TRUTH MODEL. 

DO 565 1=1,NT 
565 READ(5,550) (PHIT(I,J),J=1,NT) 

G 
G READ THE Q-SUBMATRIX OF THE TRUTH MODEL. 

DO 580 1=1,NT 
580 READ(5,550% (QT(I,J),J=1,NT) 

G 
G 
G READ THE H AND R OF THE TRUTH MODEL. 

READ(5,550) (HT(I),1=1,NT) 
READ(5,550) RT 

G 
DO 1600 IQ=1,4 

G READ Q-MATRIGES OF SUBOPTIMAL SYSTEMS. 
DO 600 1=1,NS 

600 READ(5,550) (QS(I,J),J=1,NS) 
G 
G SET A PRIORI GOV OF SUBOPTIMAL SYSTEM TO ZERO. 

DO 620 1=1,NS 
DO 620 J=1,NS 

620 PNS(I,J)=O.DO 
G 
G SET A PRIORI GOV. MATRIX OF THE TRUTH MODEL TO ZERO. 

DO 630 1=1,NT 
DO 630 J=1,NT 

PNT(I,J)=0.D0 

G GET THE INITIAL A PRIORI ERROR GOV FROM THE TRUTH MODEL. 
630 PNO(I,J)=O.DO 
G 
G WRITE THE DATA OF THE KALMAN FILTER PARAMETERS. 
G 

WRITE(6,750) 
750 FORMAT(IHO,•SUBOPTIMAL SYSTEM ') 

WRITE(6,751) 
751 FORMAT(IH ,'SYSTEM MATRIX',12X,'STATE TRANSITION MATRIX') 

DO 752 1=1,NS 
752 WRITE(6,850) (FS(I,J),J=1,NS),(PHIS(I,J),J=1,NS) 

G 
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WRITEf6.753) 

753 FORMAT(IHO,'MEAS. MATRIX',12X,'MEAS. ERROR GOV. R') 
WRITE(6,850) (HS(I),1=1,NS),RS 
WRITE(6,756) 

756 FORMATdHO,'A PRIORI ERROR COVARIANCE', IX, 'Q-MATRIX') 
DO 758 1=1,NS 

758 WRITE(6,850) (PNS(I,J),J=1,NS),(QS(I,J),J=1,NS) 

C 
850 FORMAT(IH ,10(012.4,IX)) 
C 
C 

WRITE(6,852) 
852 FORMATCIHO, 'TRUTH MODEL ') 

WRITE(6,853) 
853 FORMATdH , ' SYSTEM MATRIX',52X,'STATE TRANSITION MATRIX') 

DO 854 1=1,NT 
854 WRITE(6,850) (FT(I, J) ,J=1,NT),(PHIT(I,J),J=1,NT) 

WRITE(6,856) 
856 FORMAT(IHO,'MEAS. MATRIX',52X,'MEAS. ERROR GOV. R') 

WRITE(6,850) (HT(I),1=1,NT),RT 

WRITE(6,857) 
857 FORMATdHO,'A PRIORI ERROR COVARIANCE ' ,40X,'Q-MATRIX' ) 

DO 858 1=1,NT 
858 WRITE(6,850) (PNT(I,J),J=1,NT),(QT(I,J),J=1,NT) 

C 
C 
C 
G 

DO 1600 K=1,ISTEP3 
C 
G COMPUTE THE GAINS OF THE SUBOPTIMAL AND THE TRUTH MODELS. 
G 
C COMPUTE THE SUBOPTIMAL GAINS GS. 

SUM=O.DO 
DO 1110 M1=1,NS 

DO 1110 M2=1,NS 
1110 SUM=SUM+HS(M1)*PNS(Ml,M2)*HS(M2) 
c 

HPRS=(SUM+RS) 
G 

DO 1130 1=1,NS 
SUM=O.DO 
DO 1120 M1=1,NS 

1120 SUM=SUM+PNS(I,M1)*HS(M1) 
1130 GS(I)=SUM/HPRS 
C 
G COMPUTE THE OPTIMAL GAINS GO OF THE TRUTH MODEL. 

SUM=0.D0 
DO 1160 M1=1,N0 

DO 1160 M2=1,N0 
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1160 SUM=SUM+HT(M1)*PN0(M1,M2)*HT(M2) 

C 
HPRO=(SUM+RT) 

C 
DO 1180 1=1,NO 

SUM=O.DO 
DO 1170 M1=1,N0 

1170 SUM=SUM+PN0(I,M1)*HT(M1) 
1180 G0(I)=SUM/HPR0 

C 
C UPDATE THE COVARIANCES. 

C 
C UPDATE THE GOV. OF THE SUBOPTIMAL SYSTEM. 

DO 1210 1=1,NS 
DO 1210 J=1,NS 

HG(I,J)=GS(I)*HS(J) 
1210 E2(I,J)=E1(I,J)-HG(I,J) 

C 
DO 1230 1=1,NS 

DO 1230 J=1,NS 
SUM=O.DO 
DO 1220 M1=1,NS 

1220 SUM=SUM+E2(I,Ml)*PNS(Ml,J) 
1230 PPS(I,J)=SUM 
C 
C PLUG THE SUBOPTIMAL GAINS INTO THE TRUTH MODEL. 
C 

DO 1240 1=1,NS 
1240 GT(I)=GS(I) 
C 

L=NS+1 

IF (L.GE.NT) GOTO 1270 
DO 1250 I=L,NT 

1250 GT(I)=0.D0 
C 
C COMPUTE THE GOV. OF THE TRUTH MODEL WITH THE SUBOPTIMAL GAINS. 
C 
1270 DO 1280 1=1,NT 

DO 1280 J=1,NT 
HG(I,J)=GT(I)*HT(J) 
E2(I,J)=E1(I,J)-HG(I,J) 

1280 RGT(I,J)=GT(I)*Rr'GT(J) 
C 

DO 1300 1=1,NT 
DO 1300 J=1,NT 
SUM=O.DO 
DO 1290 M1=1,NT 

DO 1290 M2=1,NT 
1290 SUM=SUM+E2(I,M1)*PNT(M1,M2)*E2(J,M2) 
1300 PPT(I,J)=SUM+RGT(I,J) 
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C -
C UPDATE THE COV. OF THE TRUTH MODEL WITH OPTIMAL GAINS. 

C 
DO 1310 1=1,NO 

DO 1310 J=1,N0 
HG(I,J)=G0(I)*HT(J) 

1310 E2(I,J)=E1(I,J)-HG(I,J) 
C 

DO 1330 1=1,NO 
DO 1330 J=1,N0 

SUM=O.DO 
DO 1320 M1=1,N0 

1320 SUM=SUM+E2(I,M1)"PM0(M1,J) 
1330 PPO(I,J)=SUM 
C 
C PROJECT AHEAD OF THE COV. OF THE SUBOPTIMAL SYSTEM. 
C 

DO 1360 1=1,NS 
DO 1360 J=1,NS 

SUM=0.D0 
DO 1350 M1=1,NS 

DO 1350 M2=1,NS 
1350 SUM=SUM+PHIS(I,M1)*PPS(M1,M2)*PHIS(J,M2) 
1360 PNS(I,J)=SUM+QS(I,J) 
C 
C PROJECT AHEAD OF COV. OF THE TRUTH MODEL WITH SUBOPTIMAL GAINS. 
C 

DO 1400 1=1,NT 
DO 1400 J=1,NT 

SUM=0.D0 
DO 1380 M1=1,NT 

DO 1380 M2=1,NT 
1380 SUM=SUM+PHIT(I,M1)*PPT(M1,M2)*PHIT(J,M2) 
1400 PNT(I,J)=SUM+QT(I,J) 

C 
C PROJECT AHEAD OF THE COV. OF THE TRUTH MODEL WITH OPTIMAL GAINS. 
C 

DO 1440 1=1,NO 
DO 1440 J=1,N0 

SUM=0.D0 
DO 1420 M1=1,N0 

DO 1420 M2=1,N0 
1420 SUM=SUM+PHIT(I,M1)*PP0(Ml,M2)*PHIT(J,M2) 
1440 PNO(I,J)=SUM+QT(I,J) 

C 
C CALCULATE THE STANDARD DEVIATIONS OF A POSTERIORI ERROR COV. 

IF (IQ.EQ.l) SDPPT1(K)=DSQRT(PPT(1,1))/TIME 
IF (IQ.EQ.2) SDPPT2(K)=DSQRT(PPT(1,1))/TIME 
IF (ÎQ.F0.3) SDPPT3(K)=DSQRT(PPT(1,1))/TIME 
IF (IQ.EQ.4) SDPPT4(K)=DSQRT(PPT(1,1))/TIME 
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SDPPO(K)=DSQRT(PPO(1,1))/TIME 

C 
C TO FILTER THE PROCESS SET THE MEASUREMENT TO RT=RS=.5D-17. 

IF (K.NE.ISTEPl) GO TO 1595 
RT=6.25D-16 
RS=RT 

C 
C TO PREDICT N STEPS AHEAD SET RT=RS=1.D0. 
1595 IF (K.NE.ISTEP2) GO TO 1600 

RT=1.D0 
RS=RT 

C TO PREDICT I TIME UNITS AHEAD FIX ERROR=PPO(1,1) AT THE 70TH STEP. 
ERR0R=PP0(1,1) 

C 
C 
1600 CONTINUE 
C 
C COMPUTE OPTIMAL PREDICTION OF I TIME UNITS AHEAD. 

DO 1610 I=ISTEP2,ISTEP3 
T=(I-ISTEP2)*TIME 
ESUM=4.715D-20*T + 3.6D-19*T*T + 2.50029D-20*T*T*T + ERROR 

1610 PRDERR(I)=DSQRT(ESUM)/TIME 

C 

C 
C WRITE STANDARD DEVIATIONS OF SUBOPTIMAL PPT AND TRUTH PPO. 

WRITE(6,1620) 
1620 FORMATCIHI,'OPTIMAL STD',14X,'SUBOPTIMAL STANDARD DEVIATION') 

DO 1640 K=1,ISTEP3 
1640 WRITE(6,1650) K,SDPPO(K),SDPPT1(K),SDPPT2(K),SDPPT3(K), 

1 SDPPT4(K),PRDERR(K) 
1650 FORMATCIH ,I3,3X,6(D9.3,3X)) 
C 

DO 1800 K=2,ISTEP3 
TSTEP(K)=K*TIME 
SDPPO(K)=DLOG10(SDPPO(K)) 
SDPPTl(K)=DL0G10(SDPPTl(K)) 
SDPPT2(K)=DLOG10(SDPPT2(K)) 
SDPPT3(K)=DLOG10(SDPPT3(K)) 
SDPPT4(K)=DL0G10(SDPPT4(K)) 
IF (K.LT.ISTEP2) GOTO 1800 
PRDERR(K)=DL0G10(PRDERR(K)) 

1800 CONTINUE 
C 
C PLOT STANDARD DEVIATIONS OF THE ABOVE. 

KSTEP=-ISTEP3 
CALL GRAPH(KSTEP,TSTEP,SDPPO,103,102,5.0,-5.0,40.0,0.0, 
1 5.0,-10.0,'UNIT STEP;','STANDARD DEVIATION;', 
2 'FILTERING WITH 5TH;','FLICKER;') 
CALL GRAPHS(KSTEP,TSTEP,SDPPT1,204,102,'SUBOPTIMAL I;') 
CALL GRAPHS(KSTEP,TSTEP,SDPPT2,209,102,' II;') 
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CALL GRAPHS(KSTEP,TSTE?,SDFFT3,208,102,' 
CALL GRAPHS(KSTEP,TSTEP,SDPPT4,210,102,' 

iii;') 
iv;') 

STOP 

END 
//GO.SYSIN DD * 

0 . 0  
0 . 0  
O.IOOOOOOD 01 
0 . 0  
O.IOOOOOOD 01 
0 . 0  
O.IOOOOOOD 01 
0 . 0  
0 . 0  
0 . 0  
0 . 0  
0 . 0  
0 . 0  
0 . 0  

-0.1392820D 02 
O.IOOOOOOD 01 
0.7179672D-01 
0 . 0  
0 . 0  
0 . 0  
0 . 0  
0 . 0  
0 . 0  
0 . 0  
0.8934257D-06 
0.4306232D-18 
0.5026500D-19 
0.3746699D-19 
0 . 0  
0.1453159D-18 
0.7231092D-19 
0.16107:,1ÎD-18 
0.1266038D-18 
0.5026500D-19 
0.5096864D-18 
O.IOOOOOOD 01 
0 . 0  
O.IOOOOOOD 01 
0.4306000D-18 
0.3747000D-19 
0.7215000D-19 
0.3747000D-19 
0.4322000D-18 
0.3975000D-18 

O.IOOOOOOD 01 
0 . 0  
O.IOOOOOOD 01 
O.IOOOOOOD 01 
0 . 0  
O.IOOOOOOD 01 

0 . 0  

0 . 0  

0 . 0  

0 . 0  

O.IOOOOOOD 01 

O.IOOOOOOD 01 

0 . 0  

0 . 0  

0 . 0  

0.3746699D-19 

0.7500899D-19 

0 . 0  

0 . 0  

0 . 0  

0 . 0  

0.3747000D-19 
0.7501000D-19 
0.3747000D-19 
0.7501000D-19 
0.3975000D-18 
0.5072000D-18 

O.IOOOOOOD 01 
O.IOOOOOOD 01 

0 . 0  

-0.7179670D-01 

0 . 0  

0 . 0  

0.9649456D 00 

0 . 0  

0.9307201D 00 

0 . 0  

0 . 0  

0.1453159D-18 

0 . 0  

0.6723979D-19 

0.8268107D-19 

0.7231092D-19 

0 . 0  

O.IOOOOOOD 01 

0 . 0  

0 . 0  

-O.IOOOOOOD 01 

0 . 0  

0.6321206D 00 

0 . 0  

0 . 0  

0.3678794D 00 

0 . 0  

0.1610753D-18 

0 . 0  

0.8268107D-19 

0.1087655D-18 

0.1266038D-18 

0 . 0  
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0.4322000D-18 0.3975000D-18 
0.3975000D-18 0.7501C00B-19 

STOP 

END 
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This is a prediction portion of the error analysis program. 

//PRDCT5 JOB 16954,AHN 
//SI EXEC WATFIVS 
//GO.SYSIN DD * 
$JOB AHN 

DOUBLE PRECISION PHIT,PHIS,QT,QS1,QS2,QS3,QS4,PT,PS1,PS2,PS3,PS4, 
1 K,RD,SUM,PI,H0,H1,H2,PRDCT,PRD1,PRD2,PRD3,PRD4,BD,SDPT,SDPS1, 
2 SDPS2,SDPS 3,SDPS4,A,B,C,BB,CC,RDN,TSTEP 
DIMENSION PHIT(5,5),PHIS(2,2),QT(5,5),QS1(2,2),QS2(2,2),QS3(2,2), 

1 QS4(2,2),PT(5,5),PS1(2,2),PS2(2,2),PS3(2,2),PS4(2,2),K(3), 
2 RD(3),PRDCT(5,5),PRD1(5,5),PRD2(5,5),PRD3(5,5),PRD4(5,5), 
3 BD(100),SDPT(100),SDPS1(100),SDPS2(100),SDPS3(100), 
4 SDPS4(100),TSTEP(100) 

C 
c INITIALIZE THE DATA. 
c 

PI=3.141592D0 
NS=2 
NT=5 

NSTEP=80 
H0=9.43D-20 
H1=1.8D-19 
H2=3.8D-21 

c 
K(1)=3.57265D-1 
K(2)=2.D0/3.D0 
K(3)=4.97607D0 

C 
RD(l)=7.17967D-2 
RD(2)=2.DO/3.DO 
RD(3)=13.9282D0 

C 
DO 1700 1=1,NT 

1700 READ(5,1750) (PT(I 

1750 F0RMAT(4D16.7) 
G 

DO 1800 1=1,NS 
DO 1800 J=1,NS 

PS1(1,1)=PT(1,1) 
PS1(1,2)=PT(1,2) 
PS1(2,1)=PT(2,1) 
PS1(2,2)=PT(2,2) 

C 
PS2(1,1)=PT(1,1) 
PS2(1,2)=-PT(1,2) 
PS2(2,1)=PT(2,1) 
PS2(2,2)=PT(2,2) 

C 
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PS3(1,1)=PT(1,1) 

PS3(1,2)=PT(1,2) 
PS3(2,1)=PT(2,1) 
PS3(2,2)=PT(2,2) 

C 
PS4(1,1)=PT(1,1) 
PS4(1,2)=PT(1,2) 
PS4(2,1)=PT(2,1) 
PS4(2,2)=PT(2,2) 

1800 CONTINUE 
C 

DO 2000 1=1,NT 
DO 2000 J=1,NT 

QT(I,J)=0.D0 
PHIT(I,J)=0.D0 

2000 CONTINUE 

C 
PHIS(1,1)=1.D0 
PHIS(2,1)=0.D0 
PHIS(2,2)=1.D0 
PHIT(1,1)=1.D0 
PHIT(2,2)=1.D0 

C 
C PREDICT UP TO NSTEPS AHEAD. 
C 

DO 6000 N=1,NSTEP 
PHIT(1,2)=N 
PHIS(1,2)=N 
DO 3100 J=l,3 

JJ=J+NS 

C TO AVOID UNDERFLOW TEST ARGUMENT OF DEXP FUNCTION. 
RDN=RD(J)*N 

C 
IF (RDN.GT. 25.DO) THEN DO 

PHIT(JJ,JJ)=O.DO 
ELSE DO 

PHIT(JJ,JJ)=-DEXP(-RDN) 

END IF 
C 

PHIT(1,JJ)=(1.DO+PHIT(JJ,JJ))/RD(J) 
3100 CONTINUE 
C 
C 

C FIRST CANDIDATE OF Q-SUBOP. 
QS1(1,1)=HO*N/2.DO+2.D0*Hl*N**2+2.D0*PI**2/3.D0*H2*N**3 
QS1(1,2)=PI**2*H2*N**2 
QS1(2,1)=QS1(1,2) 
QS1(2,2)=2.D0*PI**2*H2*N 

C 
C SECOND CANDIDATE OF Q-SUBOP. 
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QS2(1,l)=H0*N/2.DO+2.D0*PI**2/3.D0*H2*N**3 
QS2(1,2)=QS1(1,2) 
QS2(2,1)=QS2(1,2) 
QS2(2,2)=QS1(2,2) 

C 

C THIRD CANDIDATE OF Q-SUBOP. 
QS3(1.1)=QS1(1,1) 
QS3 (1,2)=2. D0*Hl*N+PI**2<fH2*N**2 
QS3(2,1)=QS3(1,2) 
QS3(2,2)=H0/(2.D0*N)+2.D0*Hl+8.DO/3.D0*PI**2*N 

C 
C FOURTH CANDIDATE OF Q-SUBOP. 

QS4(1,1)=QS1(1,1) 
QS4(1,2)=QS3(1,2) 
QS4(2.1)=QS4(1,2) 
QS4(2,2)=QS1(2,2) 

C 
C 5TH ORDER Q MATRIX. 

QT(1,1)=QS1(1,1) 
QT(1,2)=QS1(1,2) 
QT(2,1)=QT(1,2) 
QT(2,2)=QS1(2,2) 

C 
DO 3300 1=1,3 

DO 3300 J=l,3 
II=I+NS 
JJ=J+NS 
A=(RD(I)+RD(J))*N 

C 

IF (A.LT. 25.DO) THEN DO 
QT(II,JJ)=K(I)*K(J)*(1.D0-DEXP(-A))/(RD(I)+RD(J))*PI*H1 

ELSE DO 
QT(II,JJ)=K(I)*K(J)/(RD(I)+RD(J))*PI*H1 

END IF 
3300 CONTINUE 
C 

DO 3600 J=l,3 
SUM=0.DO 
DO 3500 1=1,3 

C 

C TO AVOID UNDERFLOW IN EXPONENTIAL FUNCTION TEST ARGUMENT. 
B=RD(J)*N 

IF (B.GT. 25.DO) THEN DO 
BB=0.DO 

ELSE DO 
BB=DEXPf-B) 

END IF 

C=(RD(J)+RDCI))*N 
IF (C.GT. 25.DO) THEN DO 
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CC=O.DO 

ELSE DO 
CC=DEXP(-C) 

END IF 
C 

SUM=SUM+((1.D0-BB)/RD(J)-(1.D0-CC)/(RD(I)+RD(J))) 
1 *K(J)*K(I)/RD(I) 

3500 CONTINUE 
QT(1,J+NS)=SUM*PI*H1 

3600 CONTINUE 
C 
C COMPUTE PREDICTION ERROR OF THE FIRST CANDIDATE. 

DO 4200 1=1,NS 
DO 4200 J=1,NS 

SUM=0.D0 
DO 4000 M1=1,NS 

DO 4000 M2=1,NS 
SUM=SUM+PHIS(I,M1)*PS1(M1,M2)*PHIS(J,M2) 

4000 CONTINUE 
PRD1(I,J)=SUM+QS1(I,J) 

4200 CONTINUE 
C 
C COMPUTE PREDICTION ERROR OF THE SECOND CANDIDATE. 

DO 4400 1=1,NS 
DO 4400 J=1,NS 

SUM=0.D0 
DO 4300 M1=1,NS 

DO 4300 M2=1,NS 
SUM=SUM+PHIS(I,M1)*PS2(M1,M2)*PHIS(J,M2) 

4300 CONTINUE 
PRD2(I,J)=SUM+QS 2(1,J) 

4400 CONTINUE 
C 
C COMPUTE PREDICTION ERROR OF THE THIRD CANDIDATE. 

DO 4600 1=1,NS 
DO 4600 J=1,NS 

SUM=O.DO 
DO 4500 M1=1,NS 

DO 4500 M2=1,NS 
SUM=SUM+PHIS(I,M1)*PS3(Ml,M2)*PHIS(J,M2) 

4500 CONTINUE 
PRD3(I,J)=SUM+QS3(I,J) 

4600 CONTINUE 
C 
C COMPUTE PREDICTION ERROR OF THE FOURTH CANDIDATE. 

DO 4800 1=1,NS 
DO 4800 J=1,NS 

SUM=O.DO 
DO 4700 M1=1,NS 

DO 4700 M2=1,NS 
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SUM=SUM+PHIS(I,M1)*PS4(M1,M2)*PHIS(J,M2) 

4700 CONTINUE 
PRD4(I,J)=SUM+QS4(I,J) 

4800 CONTINUE 

C 
C COMPUTE PREDICTION ERROR OF THE 5TH ORDER MODEL. 

DO 5000 1=1,NT 
DO 5000 J=1,NT 

SUM=0.D0 
DO 4900 M1=1,NT 

DO 4900 M2=1,NT 
SUM=SUM+PHIT(I,M1)*PT(M1,M2)*PHIT(J,M2) 

4900 CONTINUE 
PRDCT(I,J)=SUM+QT(I,J) 

5000 CONTINUE 
C 
C PREDICTION BY BODE-SHANNON METHOD. 

BD(N)=DSQRT(PT(1,1)+QS1(1,1)) 
SDPT(N)=DSQRT C PRDCT(1,1)) 
SDPS1(N)=DSQRT(PRD1(1,1)) 
SDPS2(N)=DSQRT(PRD2(1,1)) 
SDPS3(N)=DSQRT(PRD3(1,1)) 
SDPS4(N)=DSQRT(PRD4(1,1)) 

C 
WRITE (6,5200) N,SDPT(N),SDPS1(N),SDPS2(N),SDPS3(N),SDPS4(N),BD(N) 

5200 FORMAT(IH ,I3,3X,6(D15.7,3X)) 
6000 CONTINUE 
C 

DO 7000 I=1,NSTEP 
TSTEP(I)=I*1.D0 
SDPT(I)=DLOG10(SDPT(I)) 
SDPS1(I)=DLOG10(SDPS1(I)) 
SDPS 2(I)=DLOG10(SDPS2(I)) 
SDPS3(I)=DL0G10(SDPS3(I)) 
SDPS4(I)=DL0G10(SDPS4(I)) 
BD(I)=DL0G10(BD(I)) 

7000 CONTINUE 

C 
C PLOT STANDARD DEVIATIONS OF THE ABOVE. 

KSTEP=-NSTEP 
CALL GRAPH(KSTEP,TSTEP,SDPT,103,102,5.0,-5.0,20.0,0.0, 

1 5.0,-10.0,'UNIT STEP;','STANDARD DEVIATION;', 
2 'PREDICT WITH 5TH;','FLICKER;') 
CALL GRAPHS(KSTEP,TSTEP,SDPS1,204,102,'SUBOPTIMAL I;') 
CALL GRAPHS(KSTEP,TSTEP,SDPS2,209,102,' II;') 
CALL GRAPHS(KSTEP,TSTEP,SDPS3,208,102,' III;') 
CALL GRAPHS(KSTEP,TSTEP,SDPS4,210,102,' IV;') 
CALL GRAPHS(KSTEP,TSTEP,BD,312,102,'BODE-SHANNON ;') 
STOP 
END 
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ÇENTRY 
0.1015599D-15 

0.4209731D-19 

0.6944787D-17 
-0.5585303D-21 
0.1583614D-17 
0.7218362D-19 
0.2850850D-18 
0.126S809D-18 
0.4209731D-19 
0.5096830D-18 

0.6944787D-17 

0.1487705D-17 

-0.26082S2D-18 

-0.6009047D-20 

-0.5585303D-21 

0.1583614D-17 

-0.260S252D-18 

0.4691109D-18 

0.1244133D-18 

0.7238362D-19 

0.2850850D-18 

-0.6009047D-20 

0.1244133D-18 

0.1256097D-18 

0.1265809D-18 
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